An automated MALDI mass spectrometry approach for optimizing cyclosporin extraction and quantitation.

نویسندگان

  • J Wu
  • K Chatman
  • K Harris
  • G Siuzdak
چکیده

A combinatorial extraction method and an automated matrix-assisted laser desorption/ionization (MALDI) mass spectrometry procedure were used to improve the clinical analysis of the immunosuppressant drug cyclosporin A. Cyclosporin extracts from whole blood were analyzed by MALDI and electrospray ionization (ESI) mass spectrometry, allowing for their identification and quantification. Due to limitations associated with the current multistep cyclosporin extraction procedure from whole blood, a combinatorial approach was devised to optimize this extraction. Optimization was performed by generating an array of solvent systems to be used for extraction from blood, and an automated analysis was carried out on a MALDI mass spectrometer to identify successful extractions. The first generation of experiments revealed four binary solvent systems to be effective for cyclosporin extraction (hexane/EtOH, ACN/H2O, ACN/MeOH, and hexane/CHCl3). A new array based on these solvent systems was generated, and a second iteration of these experiments was then performed. In the second generation of experiments, hexane/CHCl3 (70:30) was found to provide the most effective single-step extraction of these solvent systems for cyclosporin and its metabolites. The limits of detection were determined to be 15 ng/mL in whole blood for ESI/MS and MALDI-MS and could also be used for identifying major drug metabolites. In addition to applying this combinatorial approach to extraction procedures, this experimental design could easily be extended to examine other approaches, such as optimizing chemical reactions and screening inhibitors in enzymatic reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of a novel automatic deposition of bacteria and yeasts on MALDI target for MALDI-TOF MS-based identification using MALDI Colonyst robot

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) -based identification of bacteria and fungi significantly changed the diagnostic process in clinical microbiology. We describe here a novel technique for bacterial and yeast deposition on MALDI target using an automated workflow resulting in an increase of the microbes' score of MALDI identification. We ...

متن کامل

A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. A...

متن کامل

ON-LINE SOLID-PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/PARTICLE BEAM-MASS SPECTROMETRY FOR DEGRADATION STUDIES OF SOME POLAR PESTICIDES IN WATER

An on-line automated method for photodegradation studies of isoproturon, diuron, atrazine, fenitrothion, and metoxuron by means of liquid chromatography/mass spectrometry (LC/MS) with particle beam (PB) interface is described. Surface water samples were first spiked with 50 µg/l of each pesticide and then exposed to the radiation of the medium-pressure mercury lamp. Next, in regular intervals o...

متن کامل

Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry

Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mix...

متن کامل

An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry.

An algorithm for bacterial identification using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is being developed. This mass spectral fingerprint comparison algorithm is fully automated and statistically based, providing objective analysis of samples to be identified. Based on extraction of reference fingerprint ions from test spectra, this approach should lend itself wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 69 18  شماره 

صفحات  -

تاریخ انتشار 1997